• 173.50 KB
  • 2023-11-20 07:00:02 发布

3.4 第1课时 产品配套问题和工程问题1-人教版数学七年级上册教学资源

1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
3.4 实际问题与一元一次方程 第1课时 产品配套问题和工程问题 1.以“探究”的形式讨论如何用一元一次方程解决实际问题;(重点,难点) 2.体会一元一次方程与实际生活的密切联系,加强数学建模思想的应用意识;(重点) 3.培养运用一元一次方程分析和解决实际问题的能力.(重点)                  一、情境导入 近来我们市要修一条公路,公路大约长120千米,今天一早,有两个工程队找到了局长,甲工程队说:“包给我们,保证30天完成”;乙工程队说:“包给我们,保证20天就完成”.如果你是局长,会怎么办呢? 二、合作探究 探究点一:产品配套问题 某车间有工人660名,生产一种由一个螺栓和两个螺母组成的配套产品,每人每天平均生产螺栓14个或螺母20个.如果你是这个车间的车间主任,你应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套? 解析:本题找出等量关系为:生产的螺栓数2=生产的螺母数,把相关的代数式代入即可列方程. 解:设分配x人生产螺栓,(660-x)人生产螺母, 依题意得14x2=(660-x)20, 解得x=275, ∴660-x=385. 答:应分配385人生产螺母,275人生产螺栓. 方法总结:此题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解决本题的关键. 探究点二:工程问题 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成? 解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可. 解:设乙队还需x天才能完成,由题意得 3+(3+x)=1, 解得x=13. 答:乙队还需13天才能完成. 方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1. 三、板书设计 1.配套问题:找出等量关系 2.工程问题: (1)工程总量=效率时间. (2)各部分的工程和=工作总量=1. 本节课以生活中常见的一个问题展开,提高学生的兴趣,让学生们认识到数学知识与我们的实际生活息息相关.然后通过例题教学,为学生提供了探索空间,通过猜测、验证、质疑、讨论、解疑等一系列活动,充分调动学生学习的积极性.让学生在实践中获得解决问题的方法,得到学习的乐趣.