- 1017.50 KB
- 2023-11-18 20:00:03 发布
1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
第2课时 角平分线的判定
一、教学目标
(一)知识与技能
1.了解角的平分线的判定定理;
2.会利用角的平分线的判定进行证明与计算.
(二)过程与方法
在探究角的平分线的判定定理的过程中,进一步发展学生的推理证明意识和能力.
(三)情感、态度与价值观
在探究作角的平分线的判定定理的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.
二、教学重点、难点
重点:角的平分线的判定定理的证明及应用;
难点:角的平分线的判定.
三、教法学法
自主探索,合作交流的学习方式.
四、教学过程
(一) 复习、回顾
1. 角平分线的作法(尺规作图)
①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;
②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;
③过点P作射线OP,射线OP即为所求.
2. 角平分线的性质:角的平分线上的点到角的两边的距离相等.
①推导
已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,
垂足分别为点A、点B.
求证:PA=PB.
证明:∵PA⊥OM,PB⊥ON
∴∠PAO=∠PBO=90
∵OC平分∠MON
∴∠1=∠2
在△PAO和△PBO中,
∴△PAO≌△PBO
∴PA=PB
②几何表达:(角的平分线上的点到角的两边的距离相等)
如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,
∴PA=PB.
(二)合作探究
角平分线的判定:到角的两边的距离相等的点在角的平分线上.
①推导
已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.
求证:点P在∠MON的平分线上.
证明:连结OP
在Rt△PAO和Rt△PBO中,
∴Rt△PAO≌Rt△PBO(HL)
∴∠1=∠2
∴OP平分∠MON
即点P在∠MON的平分线上.
②几何表达:(到角的两边的距离相等的点在角的平分线上.)
如图所示,∵PA⊥OM,PB⊥ON,PA=PB
∴∠1=∠2(OP平分∠MON)
【典型例题】
例1. 已知:如图所示,∠C=∠C′=90,AC=AC′.
求证:(1)∠ABC=∠ABC′;
(2)BC=BC′(要求:不用三角形全等判定).
分析:由条件∠C=∠C′=90,AC=AC′,可以把点A看作是
∠CBC′平分线上的点,由此可打开思路.
证明:(1)∵∠C=∠C′=90(已知),
∴AC⊥BC,AC′⊥BC′(垂直的定义).
又∵AC=AC′(已知),
∴点A在∠CBC′的角平分线上(到角的两边距离相等的点在这个角的平分线上).
∴∠ABC=∠ABC′.
(2)∵∠C=∠C′,∠ABC=∠ABC′,
∴180-(∠C+∠ABC)=180-(∠C′+∠ABC′)
即∠BAC=∠BAC′,
∵AC⊥BC,AC′⊥BC′,
∴BC=BC′(角平分线上的点到这个角两边的距离相等).
例2. 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论?
分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点P到三边的垂线段.
解:AP平分∠BAC.
结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.
理由:过点P分别作BC,AC,AB的垂线,垂足分别是E、F、D.
∵BM是∠ABC的角平分线且点P在BM上,
∴PD=PE(角平分线上的点到角的两边的距离相等).
同理PF=PE,∴PD=PF.
∴AP平分∠BAC(到角的两边的距离相等的点在这个角的平分线上).
(三)巩固训练
(四)小结
请你说说本课的收获与困惑.
(五)作业
您可能关注的文档
- 12.3 第2课时 角平分线的判定2-人教版数学八年级上册教学资源
- 13.3.1 第1课时 等腰三角形的性质2-人教版数学八年级上册教学资源
- 12.2 第3课时 “角边角”“角角边”-人教版数学八年级上册教学资源
- 18.2.1 第2课时 矩形的判定-人教版数学八年级下册教学资源
- 12.3 第1课时 角平分线的性质2-人教版数学八年级上册教学资源
- 13.2第1课时 画轴对称图形-人教版数学八年级上册教学资源
- 12.1 全等三角形-人教版数学八年级上册教学资源
- 13.1.1 轴对称1-人教版数学八年级上册教学资源
- 11.1.2 三角的高、中线与角平分线1-人教版数学八年级上册教学资源
- 14.3.2 第2课时 运用完全平方公式因式分解2-人教版数学八年级上册教学资源